Luas Segi-n Beraturan, Jari-jari lingkaran luar & dalam segitiga, Garis singgung luar dalam persekutuan lingkaran

Nama : Mochamad Alfath Rahman

Kelas : X MIPA 1

Absen : 34

materi Luas dan Keliling Bangun Datar Segi-n Beraturan. Soal-soal yang berkaitan dengan Luas dan Keliling Bangun Datar Segi-n Beraturan juga pernah keluar pada ujian nasional tingkat SMA. Pada dasarnya bangun datar segi-n beraturan terbentuk dari lingkaran yang dibagi-bagi menjadi beberapa bagian yang sama besar (berbentuk segitiga sama kaki). Sehingga untuk menghitung luas dan keliling bangun datar segi-n kita akan melibatkan sudut pusat dan jari-jarinya. Sudut pusatnya adalah sudut pada segitiga dengan besarnya adalah  yang ditunjukkan oleh tanda sudut warna merah. Sementara sisi dari bangun datar segi-n ditunjukkan oleh huruf . Perhatikan gambar berikut ini. 


         Dalam menghitung Luas dan Keliling Bangun Datar Segi-n Beraturan, kita melibatkan rumus luas segitiga yang melibatkan sudut yaitu lebih tepatnya luas segitiga menggunakan sinus dan untuk menghitung kelilingnya kita menggunakan konsep aturan kosinus. Silahkan teman-teman baca materinya pada artikel : "Penerapan Trigonometri pada Segitiga : Aturan Sinus, Aturan Cosinus, Luas Segitiga". Untuk lebih memudahkan, teman-teman sebaiknya juga mempelajari nilai perbandingan fungsi trigonometri pada sudut-sudut istimewa pada artikel "Perbandingan Trigonometri Sudut-sudut Berelasi". 

Penghitungan Luas dan Keliling Bangun Datar Segi-n Beraturan
 Luas bangun datar segi-n beraturan : 
*). Luas segitiga menggunaan sinus. 
Perhatikan segitga PRQ pada segienam di atas (sebagai contoh saja), luasnya adalah : 
Luas segitiga 
*). Luas bangun datar segi-n beraturan : 
Luas segi-n  luas segitiga 
Luas segi-n   

 Keliling bangun datar segi-n beraturan : 
*). Aturan kosinus menentukan pajang sisi segin-n (). 
Berdasarkan aturan kosinus pada segitiga PRQ, panjang  adalah 
 
 
 
*). Keliling bangun datar segi-n beraturan 
Keliling 



Lingkaran Dalam Segitiga

Sebuah lingkaran dapat sobat buat dalam sebuah segitiga. Caranya, buatlah garis bagi simetris dari masing-masing segitiga. Garis bagi adalah garis yang membagi sudut segitia tersebut sama besar (Bagaiaman cara membuat garis bagi akan kita bahas nanti). Dari titik perpotongan ketiga garis bagi tersebut dapat dibuat sebuah lingkaran. Titik potong ketiga garis bagiakan menjadi pusat lingkaran dan kelilingnya akan tepat menyinggung masing-masing sisi segitiga.

lingkaran dalam segitiga

Jari-Jari Lingkaran Dalam

Perhatikan gambar di atas, jari-jari lingkarang yang akan kita cari adalah OE = OF = OD. Ketiganya sama dengan tinggi dari segitiga 1, 2 da 3.

Luas Segitiga Besar = Luas ΔI + Luas ΔII + Luas ΔIII

——————-  = 1/2 (AB x OD) + 1/2 ( CB x OE) + 1/2 (AC x OF)

——————-  = 1/2 (AB x r) + 1/2 (CB x r) + 1/2 (AC x r)

——————-  = 1/2 r (AB + CB + C)

——————-  = 1/2. r. Keliling Segitiga (setengah keliling bisa dilambangkan dengan s?)

——————-  = r. S

Jadi

L = r . S

r = L/S

jadi, jari-jari lingkaran dalam dapat dicari dengan membagi luas segitiga dengan 1/2 kelilingnya. Sekarang yang menjadi masalah adalah bagaimana mencari luas segitiganya? Karena segitiga di atas adalah segitiga sembarang sobat bisa menggunakan rumus
luas segitiga sembarang

Jadi rumus jari-jari lingkaran dalam menjadi:

rumus lingkaran dalam segitiga

dengan
L = Luas Segitiga
S = 1/2 keliling Δ = 1/2 (a+b+c)

Rumus di atas tergantung jenis segitiga. Kalau segitiga siku-siku akan lebih enak mencari luasnya dengan rumus 1/2 alas kali tinggi daripada menggunakan s. Baca Rumus Lengkap Berbagai Bentuk Segitiga.

Lingkaran Luar Segitiga

Lingkaran luar segitiga adalah lingkran yang dibentuk dari perpanjangan garis bagi tiga sisi segitiga dan kelilinya akan tepat menyinggung tiga titi sudut segitiga yang ada di dalamnya. Perhatikan gambar di bawah ini

pembuktian
Pada gambar diatas, terdapat sebuah segitiga ABC dengan dengan sisi a,b, dan c. Ada lingkaran luar yang berpusat di titik O yang mengitari segitiga tersebut. OA, OB, OC. dan OD masing-masing adalah jari-jari lingkaran luar yang akan kita cari rumusnya. Untuk membantu menemukan rumus jari-jari, kita memakai garis bantu yaitu garis tinggi segitiga CT dan garis diameter yang ditarik dari titik C (garis CD).

Coba sobat perhatikan ΔCAD dengan ΔCTB

∠CAD = ∠CTB = 90o (ingat sifat sudut keliling yang menghadap diameter sama dengan 90º)

∠ADC = ∠TBC (ingat bahwa dua sudut keliling yang menghadap busur lingkaran yang sama adalah sama besar)

Karena ada dua pasang sudut yang sama maka bisa disimpulkan bahwa ΔCAD dan ΔCTB sebagung (kongruen). Karena sebangun maka perbandingan sisi-sisinya akan sama.

BC/CD = CT/AC
CD (diameter) = BC x AC / CT
CD (diameter) = a x b / CT……. (persamaan 1)

Nilai CT bisa kita cari dengan persamaan Luas

Luas ΔABC = 1/2 AB x CT
2 Luas ΔABC = AB x CT
CT = 2 Luas ΔABC / AB
CT = 2L/ c……..(persamaan 2)

Kita masukkan persamaan 2 ke persamaan 1

CD = a x b / CT
CD = a x b / (2L/c)
CD = a x b x c / 2L

Jari-jari = 1/2 CD
r = 1/2 CD = a x b x c / 4L

rumus jari jari lingkaran luar

a,b,dan c = sisi-sisi segitiga
L = luas segitiga

Garis singgung persekutuan luar adalah garis singgung yang kedua ujungnya berimpit dengan dua buah lingkaran berbeda ukuran yang sejajar.


Garis singgung persekutuan adalah garisyang menyinggung dua buah lingkaransekaligus. Dari beberapa "kedudukan dua lingkaran", diperoleh berbagai garis singgungyaitu : gambar 1 : kedua lingkaran tidak mempunyai garis singgung persekutuan.

Comments

Popular posts from this blog